Personalized virtual heart predicts the risk of sudden cardiac death

When electrical waves in the heart run amok in a condition called arrhythmia, sudden death can occur. To save the life of a patient at risk, doctors currently implant a small defibrillator to sense the onset of arrhythmia and jolt the heart back to a normal rhythm. But a thorny question remains: How should doctors decide which patients truly need an invasive, costly electrical implant that is not without health risks of its own?

To address this, an interdisciplinary Johns Hopkins University team has developed a non-invasive 3-D virtual heart assessment tool to help doctors determine whether a particular patient faces the highest risk of a life-threatening arrhythmia and would benefit most from a defibrillator implant. In a proof-of-concept study published May 10 in the online journal Nature Communications, the team reported that its new digital approach yielded more accurate predictions than the imprecise blood pumping measurement now used by most physicians.

“Our virtual heart test significantly outperformed several existing clinical metrics in predicting future arrhythmic events,” said Natalia Trayanova, the university’s inaugural Murray B. Sachs Professor of Biomedical Engineering. “This non-invasive and personalized virtual heart-risk assessment could help prevent sudden cardiac deaths and allow patients who are not at risk to avoid unnecessary defibrillator implantations.” Trayanova, a pioneer in developing personalized imaging-based computer models of the heart, supervised the research and was senior author of the journal article.

Virtual Heart
Comments (0)
Add Comment