Express Computer
Home  »  News  »  Gartner Says 10% of Workers Will Seek to Trick AI-Driven Tracking Systems by 2023

Gartner Says 10% of Workers Will Seek to Trick AI-Driven Tracking Systems by 2023

0 339

Gartner predicts that by 2023, more than one-in-ten workers will seek to trick artificial intelligence (AI) systems used to measure employee behaviour and productivity. Such systems have seen a significant uptick in use in the wake of the COVID-19 pandemic.

“Many businesses are making a permanent shift to full- or part-time remote work, which can be both costly and require cultural changes,” said Whit Andrews, distinguished research vice president at Gartner. “For management cultures that are accustomed to relying on direct observation of employee behaviour, remote work strengthens the mandate to digitally monitor worker activity, in some cases via AI.

“Just as we’ve seen with every technology aimed at restricting its users, workers will quickly discover the gaps in AI-based surveillance strategies. They may do so for a variety of reasons, such as in the interest of lower workloads, better pay or simply spite. Some may even see tricking AI-based monitoring tools as more of a game to be won than disrespecting a metric that management has a right to know.”

Organisations are using AI-enabled systems to analyse worker behaviour in the same way that AI is used to understand shoppers, customers, and members of the public. These tools provide basic activity logging with alerts, or in more sophisticated versions, can attempt to detect positive actions or misbehaviour through multivariable analysis.

Many employers use productivity monitoring systems despite a high percentage of workers finding such tools unappealing. Even prior to the pandemic, Gartner research showed that workers feared new technologies used to track and monitor work habits. As these tools become more prevalent, Gartner predicts that organisations will increasingly face workers who seek to evade and overwhelm them.

Workers may seek out gaps where metrics do not capture activity, accountability is unclear, or the AI can be fooled by generating false or confusing data. Such activities have already been observed in digital-first organisations; for example, ride-share drivers sometimes work for two different services simultaneously as a way of maximising personal earnings.

“IT leaders who are considering deploying AI-enabled productivity monitoring tools should take a close look at the data sources, user experience design and the initial use case intended for these tools before investing,” said Andrews. “Determine whether the purpose and scope of data collection supports employees doing their best work. For those that do decide to invest, ensure that the technology is being implemented ethically by testing it against a key set of human-centric design principles.”

Get real time updates directly on you device, subscribe now.

Leave A Reply

Your email address will not be published.

LIVE Webinar

Digitize your HR practice with extensions to success factors

Join us for a virtual meeting on how organizations can use these extensions to not just provide a better experience to its’ employees, but also to significantly improve the efficiency of the HR processes
REGISTER NOW 
India's Leading e-Governance Summit is here!!! Attend and Know more.
Register Now!
close-image
Attend Webinar & Enhance Your Organisation's Digital Experience.
Register Now
close-image
Enable A Truly Seamless & Secure Workplace.
Register Now
close-image
Attend Inida's Largest BFSI Technology Conclave!
Register Now
close-image
Know how to protect your company in digital era.
Register Now
close-image
Protect Your Critical Assets From Well-Organized Hackers
Register Now
close-image
Find Solutions to Maintain Productivity
Register Now
close-image
Live Webinar : Improve customer experience with Voice Bots
Register Now
close-image
Live Event: Technology Day- Kerala, E- Governance Champions Awards
Register Now
close-image
Virtual Conference : Learn to Automate complex Business Processes
Register Now
close-image