Express Computer
Home  »  Artificial Intelligence AI  »  IIT-Madras builds AI tech to convert brain signals into language

IIT-Madras builds AI tech to convert brain signals into language

0 227

Researchers at the Indian Institute of Technology Madras (IIT-Madras) have developed an Artificial Intelligence (AI) technology to convert brain signals of speech impaired humans into language, the Institute has said. The researchers can potentially interpret nature’s signals such as the plant photosynthesis process or their response to external forces.

Electrical signals, brain signals, or any signal in general, are waveforms which are decoded to meaningful information using physical law or mathematical transforms such as Fourier Transform or Laplace Transform. These physical laws and mathematical transforms are science-based languages discovered by renowned scientists such as Isaac Newton and Jean-Baptiste Joseph Fourier.

“The output result is the ionic current, which represents the flow of ions which are charged particles. These electrically driven ionic current signals are worked on to be interpreted as human language meaning speech. This would tell us what the ions are trying to communicate with us,” said study researcher Vishal Nandigana, Assistant Professor, Fluid Systems Laboratory, Department of Mechanical Engineering, IIT Madras.

“When we succeed with this effort, we will get electrophysiological data from the neurologists to get brain signals of speech impaired humans to know what they are trying to communicate,” Nandigana added.

The researchers are working on how these real data signal can be decoded into human languages such as English, and if the real data signal can be interpreted as a simple human language that all human beings can understand.

Brain signals are typically electrical signals. These are wave-like patterns with spikes, humps and crusts which can be converted into simple human language, meaning speech, using Artificial Intelligence and Deep Learning algorithms.

This enabled the researchers to read the direct electrical signals of the brain.

They tested this concept by getting experimental electrical signals through experiments in the laboratory to get signals from nanofluidic transport inside nanopores.

The nanopores were filled with saline solution and mediated using an electric field, the Institute said in a statement.

Get real time updates directly on you device, subscribe now.

Leave A Reply

Your email address will not be published.

LIVE Webinar

Digitize your HR practice with extensions to success factors

Join us for a virtual meeting on how organizations can use these extensions to not just provide a better experience to its’ employees, but also to significantly improve the efficiency of the HR processes
REGISTER NOW 
India's Leading e-Governance Summit is here!!! Attend and Know more.
Register Now!
close-image
Attend Webinar & Enhance Your Organisation's Digital Experience.
Register Now
close-image
Enable A Truly Seamless & Secure Workplace.
Register Now
close-image
Attend Inida's Largest BFSI Technology Conclave!
Register Now
close-image
Know how to protect your company in digital era.
Register Now
close-image
Protect Your Critical Assets From Well-Organized Hackers
Register Now
close-image
Find Solutions to Maintain Productivity
Register Now
close-image
Live Webinar : Improve customer experience with Voice Bots
Register Now
close-image
Live Event: Technology Day- Kerala, E- Governance Champions Awards
Register Now
close-image
Virtual Conference : Learn to Automate complex Business Processes
Register Now
close-image